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Abstract

The generalized auto-calibrating partially parallel acquisition (GRAPPA) is an auto-calibrating parallel imaging technique which
incorporates multiple blocks of data to derive the missing signals. In the original GRAPPA reconstruction algorithm only the data
points in phase encoding direction are incorporated to reconstruct missing points in k-space. It has been recognized that this scheme
can be extended so that data points in readout direction are also utilized and the points are selected based on a k-space locality
criterion. In this study, an automatic subset selection strategy is proposed which can provide a tailored selection of source points
for reconstruction. This novel approach extracts a subset of signal points corresponding to the most linearly independent base vec-
tors in the coefficient matrix of fit, effectively preventing incorporating redundant signals which only bring noise into reconstruction
with little contribution to the exactness of fit. Also, subset selection in this way has a regularization effect since the vectors corre-
sponding to the smallest singular values are eliminated and consequently the condition of the reconstruction is improved. Phantom
and in vivo MRI experiments demonstrate that this subset selection strategy can effectively improve SNR and reduce residual arti-
facts for GRAPPA reconstruction.
Published by Elsevier Inc.
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1. Introduction

Parallel imaging has been one of the most popular
topics in MRI research in recent years for its potential
to speed up MRI scanning. By using sensitivity informa-
tion from a RF coil array to perform some of the spatial
encoding which is traditionally accomplished by mag-
netic field gradient, parallel imaging techniques allow
reduction of phase encoding steps and consequently de-
crease the scan time.

Following early proposals for parallel imaging in the
late 1980s [1,2], several practical reconstruction strate-
gies have been proposed, such as sensitivity encoding
(SENSE) [3], simultaneous acquisition of spatial har-
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monics (SMASH) [4,5], parallel imaging with localized
sensitivities (PILS) [6], and sensitivity profiles from an
array of coils for encoding and reconstruction in parallel
(SPACE RIP) [7]. SMASH is the first experimentally
successful parallel imaging technique which relies on
the ability to approximate low-order harmonics of the
desired field of view (FOV) by linear combinations of
sensitivity functions. Several more flexible strategies
have been proposed to improve the performance of
SMASH in recent years, which include the tailored
SMASH [8], AUTO-SMASH [9] and later VD-AUTO-
SMASH [10], the coil-by-coil SMASH [11], the general-
ized SMASH [12], and the SENSE/SMASH hybrid
approach proposed by Sodickson and McKenize [13].

The generalized auto-calibrating partially parallel
acquisition (GRAPPA) [14] is an improved SMASH-type
technique which essentially combines several advantages
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of the previous improvements to SMASH, including
auto-calibration, coil-by-coil reconstruction, and incor-
poratingmultiple data blocks. InGRAPPA, a block-wise
reconstruction procedure is implemented. For producing
eachmissing line in k-space for each single channel, multi-
ple lines from all channels are utilized. Since more infor-
mation is incorporated to reconstruct missing lines,
GRAPPA can substantially improve the accuracy of fit
and extend the types of coil arrays and FOV orientations.

One limitation of the original GRAPPA is that the
utilization of acquired k-space data to reconstruct each
specific missing point is restricted within the phase
encoding (PE) direction. In Sodickson�s work previous
to GRAPPA [13] it has been suggested that each ac-
quired k-space point can be incorporated in reconstruc-
tion, including the data points in frequency encoding
(FE) direction. A simple method to select a k-space sub-
set in GRAPPA reconstruction is the so-called k-space
locality criterion, as proposed by Yeh et al. [15], in
which signal data are included in the generalized encod-
ing matrix (GEM) based on their distances from the tar-
get point. However, how to select an optimal k-space
subset in reconstruction is still an unsettled question.
In this study, first we compare two reconstruction
schemes in various situations by simulations, revealing
that the optimal k-space subset in GRAPPA should de-
pend on the coil array configuration and the orientation
of FOV; second we propose an automatic subset selec-
tion routine based on matrix decompositions. In con-
trast to the simple locality criterion, this new approach
extracts a tailored subset of signal points corresponding
to the most linearly independent base vectors in the
coefficient matrix of fit, effectively preventing incorpo-
rating redundant signals which only bring noise into
reconstruction without contribution to the exactness of
fit. Also, subset selection in this way has a regularization
effect since the columns corresponding to the smallest
singular values are eliminated and consequently the con-
dition of the reconstruction is improved.
2. Materials and methods

2.1. General view of k-space reconstruction in parallel

MRI

The MR signal from a two-dimensional slice detected
by a given RF coil can be written as

SqðKx;KyÞ ¼
ZZ
x;y

dxdy Cqðx; yÞMðx; yÞ

� expf�iðkxxþ kyyÞg; ð1Þ

where M (x,y) represents the spin density in a two-di-
mensional image plane labeled by Cartesian coordinates
x and y, Cq (x,y) represents the RF sensitivity for the qth
component coil in the array, and kx, ky are k-space coor-
dinates. The encoding functions for MR signals consist
of coil sensitivity modulation and gradient modulation
in two directions [13]

Bqðx; y; kx; kyÞ ¼ Cqðx; yÞ expð�ikxxÞ expð�ikyyÞ: ð2Þ

Substituting Eq. (2) into Eq. (1) and written in matrix
notation

S ¼ BM : ð3Þ
Multiple coil reconstruction is essentially a problem of
how to invert the encoding matrix B. From this perspec-
tive, Sodickson and McKenzie [13] have provided a gen-
eral view to parallel MRI and disclosed the relationship
between SENSE and SMASH. In SMASH-type tech-
niques, missing harmonics associated with omitted k-
space positions are filled in by an �inverse/fit� process
before the final FFT. Specifically, in SMASH, harmon-
ics of different orders are generated by weighted combi-
nations of coil sensitivity profiles

XL

q¼1

nðmÞq Cqðx; yÞ � expð�imDkyyÞ ð4Þ

with L representing the number of coil elements, and m

the order of the harmonics. Then the combinations of
component coil signals with the same weights can be
used to approximate the shifted signals

XL

q¼1

nðmÞq Sqðkx; kyÞ � Sðkx; ky þ mDkyÞ: ð5Þ

If the fitting scheme in SMASH is expanded so that
more than one acquired data points are used to recon-
struct each missing point, Eq. (4) can be extended to

XL

q¼1

X
ðkx;ky Þ

nðmÞq;ðkx ;ky ÞCqðx; yÞ expð�ikxDkxxÞ expð�ikyDkyyÞ

� expð�imDkyyÞ: ð6Þ

Here kx and ky are numbers related to the relative shifts
from the acquired points to the target point. Corre-
spondingly, Eq. (5) can be extended to

XL

q¼1

X
ðkx;ky Þ

nðmÞq;ðkx;ky ÞSqðkx � kxDkx; ky � kyDkyÞ

� Sðkx; ky þ mDkyÞ: ð7Þ

Eq. (7) implies that each acquired k-space point can be
utilized to derive each missing point.

2.2. Comparison of two reconstruction schemes

The flexibility in selecting acquired k-space points in
GRAPPA reconstruction raises the question of how to
choose an optimal subset. A natural and usually em-
ployed criterion is the locality criterion which assumes



Fig. 1. Graphic illustration of the original GRAPPA and the extended
GRAPPA. (A) The original GRAPPA, only points in PE direction are
incorporated. The three reconstructions are combined each incorpo-
rates four data blocks. (B) The extended GRAPPA, the k-space
locality criterion is applied. The two reconstructions are combined
each incorporates four neighbor points.
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that the nearest points have the largest contribution in
deriving the missing point. However, this assumption is
not proven exactly correct. In this study, we remark that
the source points in PE direction and FE direction usu-
ally have different contributions in the fit and their con-
tributions highly depend on the coil array configuration
and FOV orientation. To demonstrate this, two recon-
struction schemes, as sketched in Fig. 1, are compared
in various situations. The first is an original GRAPPA
reconstruction which only uses points in PE direction,
and the second is an extended GRAPPA reconstruction
which makes use of several neighbor signal points based
on the k-space locality criterion. Specifically, in the origi-
nal GRAPPA, the three reconstruction schemes sketched
in Fig. 1A were implemented (labeled as Recon1, Re-
con2, and Recon3, respectively); in the extended GRAP-
PA, the two reconstruction schemes sketched in Fig. 1B
(labeled as Recon4, Recon5, respectively) were imple-
mented. In both cases their different reconstruction re-
sults were combined weighted by the goodness of fits.
Computer simulations of phantom imaging were per-
formed to compare both reconstruction strategies.

2.3. An automatic routine for subset selection

As described above, the optimal k-space subset for
GRAPPA is not necessarily the nearest points, and its
selection should depend on different situations, e.g.,
FOV, coil configurations. Therefore, it is highly neces-
sary to have an adaptive routine to automatically iden-
tify the most efficient subset to include in the
reconstruction. For this purpose we propose a novel
two-stage method for subset selection. In the first stage
a relatively larger range of local data blocks are incorpo-
rated to form the coefficient matrix of fit, then in the sec-
ond stage a subset corresponding to the most linearly
independent columns is extracted from them based on
the numerical characteristic of the matrix.

The key procedure in GRAPPA is an �inverse/fit� pro-
cess which can be formulated as a least squares problem.
Here we denote it in a simple matrix notation

Ax ¼ b; ð8Þ

where A and b are formed by alignment of ACS points
and x is the vector of reconstruction parameters. A has
Nc · Ns columns with Nc denoting the number of coils
and Ns denoting the number of source points to include
in reconstructing a missing point. The basic idea of our
approach is first incorporating a larger range of local
source points to form the matrix A and then extract a
number of most linearly independent columns from A

for calibration and reconstruction. Here we denote the
number of initially included k-space points (positions)
by Ninitial and denote the number of columns extracted
by Nselect. Note that Nselect can be freely chosen and is
not necessarily a multiple of Nc or Ns. If all columns
of A are retained, Nselect = Ninitial · Nc. In practiceNselect

should be determined by the compromise between accu-
racy of fit and computation time. This strategy has two
benefits. First, it can select a most efficient subspace of A
for the fit and leave out the most likely redundant sig-
nals. Second, the columns eliminated by this strategy
correspond to the smallest singular values of A. As such,
the condition of A can be improved and reconstructions
can become more stable in presence of noise. Selection of
the most linearly independent columns can be achieved
by linear algebra tools such as singular value decompo-
sition (SVD) and rank-revealing QR decomposition
(RRQR) [16]. Since the SVD method always involves
much larger computational effort, in our implementa-
tions the RRQR method was employed in favor of com-
putational efficiency. Detailed description of the RRQR
algorithm is presented in Appendix A. In this study the
effectiveness of this approach is demonstrated by both
phantom and in vivo experiments and its performance
is compared with the simple k-space locality criterion.

2.4. Computer simulation

Computer simulations were performed to compare
the two reconstruction schemes sketched in Fig. 1 for
two different coil configurations. One is a 4-element
spine coil array aligned in head–foot direction which is



Fig. 2. Sketch of the two coil arrays used for comparing the performance of the original GRAPPA and the extended GRAPPA. (A) The 4-element
spine array for coronal imaging; (B) The 8-element head array for axial imaging.
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sketched in Fig. 2A. In this study, it is used for a coronal
FOV. The other is a circularly arranged 8-element head
coil for brain imaging which is sketched in Fig. 2B, and
it is used for an axial FOV. Sensitivity profiles of these
coils with the given FOVs are simulated using an ana-
lytic integration of Biot-Savart equation. Then these coil
sensitivities were used with a standard Shepp–Logan
phantom image produced by MATLAB to generate full
versions of k-space datasets (matrix = 128 · 128). Simu-
lated raw data with different acceleration factors were
then created by extracting partial datasets from the full
datasets. To compare the two reconstruction schemes
sketched in Fig. 1, first their goodness of fits was evalu-
ated for both arrays with varying acceleration factors.
The accuracy of fit was estimated by the maximum
and mean values of the fitting errors for a particular
auto-calibrating signals (ACS) line. Then both the origi-
nal GRAPPA and the extended GRAPPA were per-
formed with the simulated k-space data and their
reconstruction results are presented for comparison.
Algorithms were all implemented in the MATLAB pro-
gramming environment on a Pentium M 2.0G computer
with 512M ram.

2.5. MRI experiments

MRI experiments were performed on a 3T Siemens
Trio MRI system equipped with eight independent recei-
ver channels. All raw data were acquired with body coil
as transmit coil and an 8-leg band-pass birdcage head
coil as receive coil which is tuned to resonate as eight
independent loops to form an 8-element coil array. So
this head coil is similar with the simulated array in
Fig. 2B except that it is closed on the top (i.e., the ele-
ments curve in together at the top of the head).

Transverse phantom images were acquired with a tur-
bo spin echo sequence (FOV = 200 · 200 mm, ma-
trix = 256 · 256, slice thickness = 5 mm, TE = 6.8 ms,
TR = 0.7 s). In this experiment, a full dataset was ac-
quired and later decimated off-line by a factor of 1.8
(outer reduction factor (ORF) = 2 [10], 10 ACS lines)
and 2.7 (ORF = 3, 10 ACS lines) to simulate 1.8- and
2.7-fold acceleration, respectively.
Sagittal brain images were acquired using an inver-
sion recovery FLASH sequence (FOV = 256 · 256 mm,
matrix = 256 · 256, TE = 2.7 ms, TR = 2.1 s,
TI = 1.1 s, flip angle = 12�) with 2.7-fold acceleration
(ORF = 3, 10 ACS lines in the central k-space were ac-
quired for auto-calibration).

The automatic subset selection routine was employed
in GRAPPA reconstruction for both phantom and in
vivo experiments. At first 8 · 8 blocks of local data were
incorporated to form the matrix A in Eq. (8) with
8 · 8 · 8 columns. Then we extracted the 16 · 8 most
linearly independent columns of A by RRQR algorithm
and used this sub-matrix to replace the original matrixA
for the fit. To demonstrate the effectiveness of this ap-
proach, we also performed an ordinary GRAPPA
reconstruction as a reference which used 4 · 4 blocks
(thus A also had 16 · 8 columns) based on the locality
criterion.
3. Results

The results of computer simulations are summarized
in Table 1 and Fig. 3.

3.1. Comparison of fitting accuracy

The results of auto-calibration of the five reconstruc-
tion schemes in Fig. 1 with the two coil arrays in Fig. 2
for different acceleration factors are listed in Table 1. All
the numbers have been scaled by a same factor since
their relative values are more meaningful. The fitting er-
ror is defined by the difference between target ACS data
and least-squares fit results. Table 1 shows that the
reconstructions involved in the extended GRAPPA have
larger fitting errors than those involved in original
GRAPPA for the 4-element planar spine array; while
for the 8-element head coil array, the calibrations of
the extended GRAPPA are more accurate. Since the
goodness of fit is related to the residual aliasing artifact,
it is expected that the extended GRAPPA works better
than original GRAPPA for the circularly arranged head
array, while for the planar array where coil sensitivity



Table 1
Comparison of fitting accuracy by simulations: Original GRAPPA vs. extended GRAPPA

Acceleration 2· 3·

Reconstruction scheme O-GRAPPA E-GRAPPA O-GRAPPA E-GRAPPA

Recon1 Recon2 Recon3 Recon4 Recon5 Recon1 Recon2 Recon3 Recon4 Recon5

S-array

Error-max 108 107 92 156 113 358 350 328 271 144
Error-mean 12 12 6.1 22 15 18 22 8.9 30 16

H-array

Error-max 21 14 17 2.3 2.6 184 115 140 11 12
Error-mean 3.6 2.3 3.0 0.37 0.57 33 28 31 0.98 1.5

Different reconstructions (Recon1–5) are sketched in Fig. 2.
S-array: the 4-element spine coil; H-array: the 8-element head coil; O-GRAPPA: original GRAPPA; E-GRAPPA: extended GRAPPA.

Fig. 3. Simulated reconstruction results of a Shepp–Logan phantom image with the original GRAPPA (left) and the extended GRAPPA (right). (A)
R = 1.7, with the 4-element spine array; (B) R = 2.4, with the 4-element spine array; (C) R = 1.7, with the 8-element head array; and (D) R = 2.4,
with the 8-element head array. In each reconstruction 10 ACS lines are used for calibration.
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profiles are aligned only in phase encoding direction, the
original GRAPPA reconstruction is more suitable.

3.2. Comparison of reconstruction results

The simulated reconstruction results of the two
reconstruction strategies in Fig. 1 are presented in Fig.
3. The images with the 4-element spine coil are shown
in Fig. 3A (R = 1.7, ORF = 2, 10 ACS lines) and Fig.
3B (R = 2.4, ORF = 3, 10 ACS lines), and the images
with the 8-element head coil are shown in Fig. 3C
(R = 1.7) and Fig. 3D (R = 2.4). As expected, for the
spine array, the original GRAPPA reconstruction yields
slightly better image quality than extended GRAPPA;
while for the head array, the extended GRAPPA per-
forms better than the original GRAPPA. Particularly,
with net acceleration factor R = 2.4, the image produced
by the original GRAPPA suffers from noticeable alias-
ing artifacts, while in the extended GRAPPA these arti-
facts are significantly reduced.

3.3. MRI experiments

Reconstruction results from the phantom imaging are
displayed in Fig. 4. Here Figs. 4A and B are the recon-
structed images using the ordinary GRAPPA incorpo-
rating local 4 · 4 data blocks with R = 1.8 (ORF = 2,
10 ACS lines) and R = 2.7 (ORF = 3, 10 ACS lines),
respectively. Figs. 4C and D are their counterparts using
the automatic subset selection routine. Low level of
residual aliasing artifacts exist in all these images, but
it is clear that GRAPPA with the automatic subset selec-
tion strategy is more effective to suppress these artifacts.

Images from In vivo experiments are shown in Fig. 5.
The ordinary GRAPPA reconstruction result using
k-space locality criterion is shown in Fig. 5A, and the



Fig. 4. GRAPPA reconstruction results of a phantom image using different selection of k-space subset. (A) Ordinary GRAPPA image incorporating
local 4 · 4 data blocks with R = 1.8; (B) ordinary GRAPPA image incorporating local 4 · 4 data blocks with R = 2.7; (C) GRAPPA image using
automatic subset selection approach with R = 1.8; and (D) GRAPPA image using automatic subset selection approach with R = 2.7. Ten ACS lines
are used for calibration in all reconstructions. For (C and D) Ninitial =8 · 8, Nselect = 16 · 8.
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result using automatic subset selection is shown in Fig.
5B. To provide a visual impression of the SNR of both
reconstructions, small regions (50 · 50 pixels) of the two
images (as indicated by the white box in Figs. 5A and B)
are extracted and highlighted in Figs. 5C and D. It is
demonstrated that the automatic subset selection meth-
od can yield better SNR for GRAPPA reconstructions
than the simple k-space locality criterion.
4. Discussion

This study has shown that the ordinary k-space local-
ity criterion is not an optimal means for utilization of
data points in GRAPPA in some cases. An automatic
subset selection strategy based on matrix decomposition
has been proposed. Two important parameters have to
be carefully considered in implementation of this meth-
od. The first parameter is Nselect, i.e., how many points,
or, how many independent columns of matrix A should
be selected in the reconstruction. The second parameter
is Ninitial, i.e., how large the initial range of data blocks
should be. These two parameters should be determined
considering both the accuracy of reconstruction and
computational efficiency. Generally increasing Nselect

can improve the exactness of fit and consequently reduce
residual artifacts. However, in our experience when
more than 16 data blocks are used, no obvious improve-
ment of fit was observed with increasing number of data
blocks. This is especially the case if the number of coils is
large. The computation time of the GRAPPA algo-
rithm, on the other hand, increases significantly with
the increase of Nselect. To provide a reference, we con-
ducted GRAPPA algorithm with different Nselect and
the time costs of the reconstructions are listed in Table
2. From the regularization point of view, Nselect essen-
tially plays the role of regularization parameter. In this
sense, some parameter choice approaches, such as L-
curve and the generalized cross-validation (GCV) [16]
can be potentially useful for automatic selection and
optimization of Nselect for a given reconstruction quality.
Quantitative study of this issue is currently under way.
Obviously the initial range Ninitial should cover a suffi-
cient range to guarantee that the most useful points



Fig. 5. 3· GRAPPA reconstruction results of sagittal brain images (10 ACS lines, net acceleration factor = 2.7). (A) Ordinary GRAPPA image
incorporating local 4 · 4 data blocks; (B) GRAPPA image using automatic subset selection approach, Ninitial = 8 · 8. Nselect = 16 · 8; (C and D)
highlighted 50 · 50 regions extracted from (A and B) (indicated by the white boxes) respectively.

Table 2
Computation time vs. number of k-space points incorporated for
GRAPPA reconstruction

No. of points
incorporated

Time cost for
deriving the
reconstruction parameters (s)

Total time cost
for reconstruction (s)

2 · 2 0.11 8.7
3 · 3 0.25 9.9
4 · 4 0.98 11.9
5 · 5 2.18 14.4
6 · 6 5.40 19.6

Matrix = 256 · 256, R = 2, 10 ACS lines for calibration, algorithms
implemented on a Pentium-M 2.0G computer with 512M ram.
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for reconstruction are included. Ninitial should be related
to Nselect and empirically a Ninitial equal to four times of
Nselect/Nc is sufficient to cover the ‘‘potentially useful’’
points. Ninitial also affects the computation time since
the algorithm involves an RRQR decomposition of ma-
trix A (see Eq. (8)), but it is not dominant. In our exper-
iments, the implementation of the RRQR algorithm to
extract 16 · 8 columns from 8 · 8 · 8 columns of A took
around 1.6 s.
The nature of all the SMASH-like techniques is the
data shift in k-space. A specific set of relative shifts
from the acquired data points to the specific target
point corresponds to a set of weights for combination
of those acquired data points to yield that target point
[17]. As introduced in some previous work [12,18–20],
k-space based reconstruction methods are not limited
to Cartesian trajectories. Adapted implementations of
GRAPPA for radial and spiral trajectories have been
reported recently by Griswold et al. [18] and Heberlein
et al. [19], respectively. In both of their methods the ac-
quired data are aligned along the trajectories and seg-
mented, and for each segment the conventional
GRAPPA is performed. The subset selection approach
proposed in this study could also be effective for non-
Cartesian GRAPPA.
5. Conclusion

Computer simulations have demonstrated that the
optimal selection of data points in GRAPPA reconstruc-
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tion should depend on the coil configuration and FOV
orientation. An automatic subset selection approach
has been proposed to improve the performance of
GRAPPA reconstruction. This novel method can effec-
tively prevent incorporating redundant signals and also
has a regularization effect for better numerical condition-
ing of the inverse problem. Phantom and in vivo experi-
ments have demonstrated that the automatic routine for
selecting a tailored subset has significant potential for
suppressing aliasing artifacts and improving SNR.
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Appendix A. Rank-revealing QR decomposition

The rank-revealing QR (RRQR) decomposition is a
special QR factorization with column pivoting which
is guaranteed to reveal the numerical rank of a matrix
[16]. Let A is an m · n matrix (m > n), our object is to
extract r most linearly independent columns in A. Gen-
erally its RRQR decomposition has the following form:

AP ¼ QR ¼ ðQ1;Q2Þ
R11 R12

0 R22

� �
;

where P is a permutation matrix, Q has orthonormal
columns, R11 is an r · r triangular matrix and R22 is a
(n � r) · (n � r) triangular matrix. The goal of RRQR
decomposition is to maximize the smallest singular value
of R11. This goal is achieved by the permutation matrix
P, namely, the ordinary column pivoting strategy.

An explicit RRQR algorithm is described as follows
[21]:

(1) Input A = [aij] 2 Rm·n; pj = j, cj = iaji, j = 1,
2, . . . ,n, k = 1.

(2) Determine l, so that cl ¼ max
k6j6n

cj.

(3) If k = r, break and end the algorithm; otherwise go
to the next step.

(4) Interchange cl and ck, ail and aik, i = 1, 2, . . . ,m.
(5) Determine a Householder transformer Hk, so that

Hk

akk

..

.

amk

2
664

3
775 ¼

�
0

..

.

0

2
66664

3
77775:

(6) A ¼ diagðIk�1;HkÞA; cj ¼ cja
2
kj; j ¼ k þ 1; . . . ; n:

(7) k = k + 1, go to step (2).
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